pas sociable - definitie. Wat is pas sociable
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is pas sociable - definitie

NUMBERS WHOSE ALIQUOT SUMS FORM A CYCLIC SEQUENCE
Sociable numbers; Sociable chain

French ship Pourquoi Pas? (2005)         
SHIP BUILT IN 2005
RV Pourquoi Pas?; Pourquoi-Pas ? (2005); French ship Pourquoi-pas ? (2004); Pourquoi Pas? (2005); IMO 9285548
Pourquoi Pas? () is a research vessel built in Saint-Nazaire, France by Alstom Marine for IFREMER and the French Navy.
Sociable (carriage)         
  • Queen Mary]] riding in the 'Balmoral' Sociable, July 1930.
Barouche-sociable
A sociable (short for sociable coach) or barouche-sociable is an open, four-wheeled carriage described as a cross between a barouche and a victoria, having two double seats facing each other. It might be controlled from the interior by an owner-driver or have a box for a coachman.
Marche à petit pas         
Marche a petit pas; Marche à petits pas
Marche à petits pas (“gait with little steps”) is a type of gait disorder characterised by an abnormal short stepped gait with upright stance (in strict sense, as opposed to generally stooping short-stepped gait of Parkinson's disease), seen in various neurological (or sometimes muscular) disorders. It can be further differentiated from "Parkinsonian gait" by normal arm swing (as opposed to no arm swing in Parkinsonism).

Wikipedia

Sociable number

In mathematics, sociable numbers are numbers whose aliquot sums form a periodic sequence. They are generalizations of the concepts of perfect numbers and amicable numbers. The first two sociable sequences, or sociable chains, were discovered and named by the Belgian mathematician Paul Poulet in 1918. In a sociable sequence, each number is the sum of the proper divisors of the preceding number, i.e., the sum excludes the preceding number itself. For the sequence to be sociable, the sequence must be cyclic and return to its starting point.

The period of the sequence, or order of the set of sociable numbers, is the number of numbers in this cycle.

If the period of the sequence is 1, the number is a sociable number of order 1, or a perfect number—for example, the proper divisors of 6 are 1, 2, and 3, whose sum is again 6. A pair of amicable numbers is a set of sociable numbers of order 2. There are no known sociable numbers of order 3, and searches for them have been made up to 5 × 10 7 {\displaystyle 5\times 10^{7}} as of 1970.

It is an open question whether all numbers end up at either a sociable number or at a prime (and hence 1), or, equivalently, whether there exist numbers whose aliquot sequence never terminates, and hence grows without bound.